Four-phase patterns in forced oscillatory systems

نویسندگان

  • Lin
  • Hagberg
  • Ardelea
  • Bertram
  • Swinney
  • Meron
چکیده

We investigate pattern formation in self-oscillating systems forced by an external periodic perturbation. Experimental observations and numerical studies of reaction-diffusion systems and an analysis of an amplitude equation are presented. The oscillations in each of these systems entrain to rational multiples of the perturbation frequency for certain values of the forcing frequency and amplitude. We focus on the subharmonic resonant case where the system locks at one-fourth the driving frequency, and four-phase rotating spiral patterns are observed at low forcing amplitudes. The spiral patterns are studied using an amplitude equation for periodically forced oscillating systems. The analysis predicts a bifurcation (with increasing forcing) from rotating four-phase spirals to standing two-phase patterns. This bifurcation is also found in periodically forced reaction-diffusion equations, the FitzHugh-Nagumo and Brusselator models, even far from the onset of oscillations where the amplitude equation analysis is not strictly valid. In a Belousov-Zhabotinsky chemical system periodically forced with light we also observe four-phase rotating spiral wave patterns. However, we have not observed the transition to standing two-phase patterns, possibly because with increasing light intensity the reaction kinetics become excitable rather than oscillatory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiphase patterns in periodically forced oscillatory systems.

Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with succ...

متن کامل

Pattern formation in 4:1 resonance of the periodically forced CO oxidation on Pt(110).

Periodically forced oscillatory reaction-diffusion systems may show complex spatiotemporal patterns. At high-frequency resonant forcing, multiple-phase patterns can be found. In the present work, the dynamics of turbulent CO oxidation on Pt(110), forced with the fourth harmonic of the system's natural frequency, is investigated. Experiments result in subharmonic entrainment, where the system lo...

متن کامل

Phase-Front Solutions and Instabilities in Forced Oscillations

We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency. We find a new type of front instability where a stationary front shifting the oscillation phase by π decomposes into a pair of traveling fronts each shifting the phase by π/2. The instability designates a transition from standing two-phase patterns, involving alternating domai...

متن کامل

Turbulent fronts in resonantly forced oscillatory systems.

Phase fronts in the forced complex Ginzburg-Landau equation, a model of a resonantly forced oscillatory reaction-diffusion system, are studied in the 3:1 resonance regime. The focus is on the turbulent (Benjamin-Feir-unstable) regime of the corresponding unforced system; in the forced system, phase fronts between spatially uniform phase-locked states exhibit complex dynamics. In one dimension, ...

متن کامل

Front reversals, wave traps, and twisted spirals in periodically forced oscillatory media.

A new kind of nonlinear nonequilibrium patterns--twisted spiral waves--is predicted for periodically forced oscillatory reaction-diffusion media. We show, furthermore, that, in such media, spatial regions with modified local properties may act as traps where propagating waves can be stored and released in a controlled way. Underlying both phenomena is the effect of the wavelength-dependent prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 62 3 Pt B  شماره 

صفحات  -

تاریخ انتشار 2000